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Predictor Methods in Real-time Simulation

R.M. Howe
Applied Dynamics International
1. Intr oduction

In real-time smulation it may sometimes be necessary to advance a data sequence { xn} by a
given time interval in order to compensate for a dday of the same time interval which occurs
somewhere else in the simulation. For example, it is well known that a D to A (digita-to-analog)
conveter tha employsazero-orda hdd introduees an dfective dday equal to ore-hadf thetime step
h assodated with the data sequence driving the D to A conveter. If left uncompensated, this can
introduce a significant dynamic error in a closed-loop, real-time simulation. Additiond unwanted
ddays may aso occur in theinterface used to trander data between ssimulation processors or in daa
tranders between smulation pracessorsand actud hadware in ahardware-in-the-loop smulation.

In this pgper we present a number of formulas for calculating an estimated daa sequence
{ihﬂ} from a given daa sequence xp, where h is the data sequence time step and ph is the pre-
dictiontime interval. For each formula we will derive an equédion for the approxmate error in the
predicted daa paint i}Hp which, in turn, will alow usto compare the effectiveness of different pre-
dictor formulas.

We begin by conddering the Taylor series for the data point Xn+p in terms of x, and its time
derivatives. Thuswe can write

h hy2d ! yedx 1

X =X+ PO+ (PR + (P -+ (R (1)

Equaions for the estimated data-point %y, are determined by deriving formulas for approximar
tions of the time derivatives of x in Eq. (1) in terms of current and past values of x, and its time
derivatives.

2. Predictorsusing Xn, Xn-1, Xn-2, -

We first consder formulas for conveting a daa sequence {xn} to a daa sequence {Xn+p},
i.e., predicting data sequences ph secondsinto the future, usng xn, Xn-1, Xn-2, -.. . We begin by writ-
ing the following Taylor eries formulas for Xn, Xn-1, Xn-2, ... , Where xh = f,:

Xpy 1= %! hf+1 hzf hafﬁ"+2—14h4f;;"! )
Xq1 2= X! 2hfn+2h2f"! %‘h“‘f i %h“f wy (3)
X3 =% ! 3hfy+2 R dh +287hf S (4)
Xy 4= %! 4hf.+8h2f}! %2h3rﬁ"+%2h4fr';'! (5)

To derive a predictor formula based on X, Xn-1 and xn.2, we solve Eqgs (2) and (3) for f,and f}, to
orde h3. Thuswe obtain
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hf ! —:;’xn 2xnu1+%xn-.2 +%h3f,i#, (6)
L Xa" 2% 1+ X N ™
Theformulas for the estimated first and second deivatives are then:
he) = gxn! 2Xn!1+12-xn!2 , (8)
e = X! 2% 1% X0 2 9)
with the errorsin the formulas given by
hf" hiyt " S, (10)
h# hfg! " hF . (11)
The prediction fomula for §,,, becomes
yep = X+ i+ S(p) X, (12)

From Egs (1), (10), (11) ad (12) t follows that the predictor error is given goproxmately by
B! Xoup " ! Ggprgp S DT (13)

For an example, assume that the data-sequence {xn} represents the output response of a second-orde
linear system with undamped naturd frequency given by / , and dampingratio ” givenby 0.25. For
a prediction interval of 4h, i.e., p =4, anda daa-sequence time-step h=0.2/! ,, Figure 1 shows the
predictor response i}”p compared With (X, +pexact - theideal response. Note that theideal predictor
respone starts at / nt =! ph="! 4(0.2)="! 0.8, whereas the actual predictor re-sponse ﬁ)nJ,p doesnt
start until / 4t > 0. This is because the predictor formulas represented above by Egs (8) through
(13) cannot provide a respon® which ideally should occur prior to the inpu daa stimulus at t = 0.
For t > 0, Figure 1 shows tha the predictor daa-sequence output iz}Hp exhibits a reasonably close
match with the ideal predictor output (Xn+p)exact: despite the relatively large four-step prediction
interval represented by p=4. By compaison, consder the predictor error when the data sequence
{xn} isasinusid with x,=sin(/ nh). In thiscase f!! in Eq. (13)isequal to! / 3co’ nh). Then Eq.
(13) indicates tha the error in predictor output data-point i}Hp is given approxmately by (p/3 + p2/2
+p3/6)(! h)3cog! nh). Forp=4 and/ h=0.2, which represent parameters equivalent to those used in
Figure 1, the steady-state error represent-ed by Eq. (13) is a sinusoid with an amplitude equal to
0.16. Except for the startup error at t =0 the errors for the predictor example shown in Figurel are
smaller in magnitudethan 0.16.

Figure 2 repesats the example shown in Figure 1, but with half the data-sequence step size,
i.e, "hh=0.1ingead of 0.2. In ordeto maintain the same predictor lead time tp:ph when the gep
sizeis hdved, we increase the lead-time index p from 4 to 8 in obtaining the results shown in Figure
2. Note that the predictor errorsin Figure 2 show only a modest decrease compared with the errors
in Figurel. Thisis notsurprising, since for p=8 and " ;h=01, Eq. (13) yieldsan error in )'qu
which is only three quaters of theerror for for p=4 and " ;h=0.2.
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Figure 1. Rredictor output i)n+pfor input X, representing the unit-step response of a 2nd-
order system; predictor output formula based on Xp,Xn»1 and xp» »; predictor interval = 4h,
where h=0.2/" ,=data-sequence time stej
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Figure 2. Rredictor output i)n,,pfor input X, representing the unit-step response of a 2nd-
order system; predictor output formula based on Xp,Xn»1 and xp» »; predictor interval = 8h,
where h=0.1/" , =data-sequence time ste|
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Next we deive a predictor formula based on xp, Xn.1, Xn-2 and Xp.3. In this case we solve Egs
(2), (3) and (4) for f,,fland fil to orde h* This leads directly to the following formulas for
£, Pland AL

hf%:lg ! 3Xn!1+gxn!2! %Xms : (14)
he = 2x,! By 1+ 4% 2! Xrg (15)
M= 0! 31+ 32! Xz (16)
with the errorsin the formulas given by
" hf, =" 1h3f,;4# (17)

A et Lt <
h3fe h3fae %hg’fﬁ# 1

The prediction formula for )'@nJ,p becomes
4 p = X+ Py +3 (P + 2 (PH) ¥
From Egs (1) and (17) hrough (20) lhe predictor error is given goproximately by

%hp' Xn+p # " ;%p"‘ 11p2 4p 24p 2h4fﬁ°‘*- (2
When the daa sequence {xn} is a sinuid given by x,=sin(" nh), f# in Eq. (21) is equd to
"7sin(" nh). For p=4 and / h = 0.2 this results in a steady-state sinuidd error amplitude of
approximately 0.078, compared with the amplitude of 0.16 noted earlier for the case where the
predictor method is based on xn, Xn.1 and xp-2. When the predictor input data-sequence {xn} rep-
resents the output respons of a second-order linear system, i.e., the case congdered in Figure 1, the
initial startup trandent errorsassocated with thethird-orde predictor based on Xp, Xn-1, Xn-2 @and Xn.3
are condderably larger than the startup errors shown in Figure 1 for the second-order method based
0N Xn, Xn-1 and xn.o. However, following theinitial startup errors subsequent dynamic errorsfor the
third-orde predictor are significantly smaller in magnitude than the errors for the second-order
predictor method.

To derive a predictor formula based on *n: Xn" 2: Xn 3 andxy- 4, Egs (2), (3), (4) and (5) are
solved for f,, f;, fy andfy’ to order h°. Thisleadsdirectly to the formulas shown in Table 1, which
summarizes the predictor formulas of orde 2 through5 when the predictor is based on x,, and past
values of X,

3. Predictors Based on Xp,Xpr 1, fae gy fae o, frms oo

When x,, represents a state variable, which will more often than na bethecase in areal-time
smulation, the time derivative f,,.; will also be available when the data point x,, is calculated. Then
it is better to use a predictor formula based on X, X,-1 and its time derivatives f,.1, fyv o, fria, ..oy
rather than more past values of x,,. In this case Eq. (2), in addition to the Taylor series formulas for
fe s T 2y Ty 30 -or, Written in terms of f,, f, 1) ..., is used to derive formulas for f,, 3, fy, ..., as
needed in the codficients of the Taylor series equaion for the predictor output ién+p. Table 2
summarizes the predictor formulas of orde 2 through5, alongwith the approximate predictor errors
when the predictor is based on X, X,+1 and past values of its time derivative f,.
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Table 1

Predictors based on X, Xp«1,Xp" 2, Xp= 3, --.

{xn} = predictor inputdeta sequence; {Xn+pt = predictor output deta sequence; x,=f,,

2nd-orde predictor formula: )'2}1+p:xn+ phf%+%(ph)zf'jn', where
1
° #
. P W 1501 3
Predictor ouput error=%hyp" Xp+p = %p + zp + gp3’<(g'h )

hf?, = gxn " 2Xnr 1+ 35X 2, h2f,#= Xn" 2Xqr 1+ X 2

3rd-orde predictor formula: @, p=Xnt phf?,+ %( ph)zf?{+ %( ph)afj", where

) —-— 11 n n 1 2" — n n
h%—gxn 3Xn"1+%xn"2 33 hB#= 2X," 5Xr 1+ 4% 2" X 3,

38" = Xn #3 X1+ 3Xnap #Xa
i . #o11 » &4
Pred t ut = " = "
ictor ouput error =%, " Xpip %pJ, p*+ 5 24p &h £))
4th-order predictor formula: %4 p=Xy* phP + Z(ph)zp + 6(Dh)3p"+—(ph)4f)"' where

hf%:f_zxn" 4Xn"1+ 3Xn“2 gxn 3+ixn 4 Zf?#— 12 2—36Xn'1 1—29Xn 2 1§Xn 3+]]:%'Xn 4

3 4fyn_
SXnoar M= X0 = 4% 1+ 6% o~ 4% 3+ Xn_g

2
. . L
Predictor oufput error =%, p" Xn4p = %P + 15—2p2 + 2l4|o3+ 120p5&h5f,))))

; . YA — 6,1 26, 1 3gm, 1 4£ym 58 un
Sth-orde predictor formula: >q1+p-xn+phf%+§(ph) P+—(ph) f?]+ﬂ(ph) (AR 120(ph) pr

where thj :gx 5Xpe 1+ 55Xy o " %Xn 3t an 2" éxn 5,
2 77 107 1
hf = —Xn# 2 Xt g Xnpo # 1z + %Xn#4 # %Xn#&

6
3 "n__
fD —Xn 7Tlxn#l"‘ 529 429Xn#3 + ilxn#4 # %Xn#&

Xno #
A0 3 # 14X + 26Xnun # 28X +1 X # 2X s
50 X # 5Xpy +10%0 # 10%3 +5Xnsa # Xnss
Predictor ouput error =

T 137 2, 15 3, 6.6
Yhip X = %p 500" 48P° 142" 2a0P +720p2§f‘f'»)))
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Table 2
Predictors based on X, Xpuq, fynq, fye o, fye g, oo

{xn} = predictor inputdeta sequence; {Xn+pt = predictor output deta sequence; x,=f,,

2nd-orde predictor formula: )on+p—xn+ phP+ ph)zFﬁ,, where
hP =2Xq" 2%y " hfqg, D ﬁ’# 2Xq" 2xn 1" 2hf. 1
Predictor ouput error= )q%p Xn+p "?%p+ p +1 3zh3f**

3rd-orde predictor formula: % p=Xy+phf) +%(ph)2p-+1(ph)ap-- where

hf = —xn" 1—52xn " %hfn 1+%h2fn ,, h2f =%3xn" 1—58xn . 252hfn l+ghfn .
h3g; :—xn 12, - 18hfn_1+§hfn_2

5
$
Predictor ouput error =%, " Xn4p # %—p 12290p2 éé p3+ 24zh4fw

4th-orde predictor formula: X"}1+p:xn+ phfjn+%(ph)2F?;+ %(ph)af?;# %(ph)“f'j"', where

hf, = §Xn " :%Xn--lu 1_gghfn"l"'%hzfn"2" lhafn" 3

p _Xn ?an 37:I-hfnl 27 n2 54

=205 205 # Sty + %6hfn#2#1§1hfn#3, =St St Ao + 22t i

$19 . 307 2, 571 3,212 4 1 5 5.
870" " 16207 T3240P T3220" TP )M M

29, s,

Predictor ouput error =5@1+p" Xn+p #

Sth-order predictor formula: %hp=xn+ phf5+ ph)zf"+ ph)3r"'+—(ph)4f"" 120(ph)5f'""

720, » 720, . 646 264 106 19
ere hfy = 251 25101 ppirat 552" S5 e 3t 551 4.
1500,

2. 1500 1409 130 111 07
W2 = 51 X o1 Xt 15069hf”#1+ 2513”%2# 2511hf”#3+ 2514
424

35._ 1800, ., 1800, ., 3874 3672 2022

h'= 551 n# 51 X 557 Nt 551 Nhwe# 557 251 ¢4
Hagme 720, 720, 1650 1770 1110 270
h'fy= 2510 # 551 251 51 Mz 557 st 55 1Mhga

£ 2100, . 8119 6309 . 296 571
X" Sgp X1 Bog Neatgop M 5021h 502 4

3 Predictor ouput error =
o .$81 3133 o 5965 3. 473 4. 1031 s
Sep” Xnep # & 206P * 200807 T 36144° T 6024° T 602400 T 72

hfpust

fat

6 ook
Opzhf



3/07

4. Predictors Using X, frys faegs fanzs fae s e

Not infrequently in a dynamic simulation both the output data-point X, and its time deri-
vative f,, are state variables. For example, this may be the case when the system being simulated
involves a doubk integration of acceleration to compute velodty and displacement. When this is
true, both x, andfy, are available for calculating %, The predictor formula can then be based on
X fous Fr 1 i 20 f,, 3 ... . Formulas for , ), f?{,’.. are agan derived from Taylor series rep-
resenting fpeq, fye o, fye 3 .o interms of £, £ fos ... Table 3 summarizes the predictor formulas of
orde 2 through5, along with the approximate predictor errors It should be nated tha whenever the
predictionindex p =1, the formulas for ﬁmp given in Table 3 reduce to the formula for X, inthe
Adams-Bashforth predictor integration dgorithm of order 2.

Table 3
Predictors based on X, fr, fr_1, fho2s faoss -

{xn} = predictor inputdata sequence; {Xn+p} = predictor output deta sequence; x,=",

2ndrorde predictor formula: Ghp=Xn+ phf?ﬁ%(

. o " " $]_ 2 1 3' -
Predictor ouput error= %" Xn+p # %p * 5P 2h3fn

ph) R, where 2= St # 2y

3rd-orde predictor formula: %4 p=Xy+ phf?]+%(ph)2f?{+%(ph)3p", where
%y = o= 2y s Ghfazs H = 1y = 2hf

Predictor ouput error =% p" Xpip #" %p2+ 5 =p3+ 4p42h4f***

4th-orde predictor formula: k}1+p:xn+ phf;?]+ ph)2P+ ph)3P + (ph)4f5“', where

L — 11 l m_
h2f —Ehfn#Shfn#ﬁ%hfn#2#§hfn#3, h3f "= 2hf,, # 5hf, + 4hfp # hfo s,
h1"= hf. # 3nf, + 3hfou, #hfoya
$1 2,11 3,

Predictor ouput ermor=>»%,5" Xp4p # " %p h5f*”°‘

2P 16p 120IO )
Sth-order predictor formula: %=X+ phfy+ 2(ph)21"'+ 6(ph)3f"'+ 24(ph)“f ey 120(ph)5|“""

where f= 22 hfy # 4hf + 3hf # 5 hfpys + 3 g,

3
h'ty=32hf, # 236hfn#1+ 129 gz # SN+ T2hfnga,
h = ghf # 9hfn#1+12hfn#2# Thfug+ ghfn#4, h5f "= hf # 4hfn#1+ 6hfn#2# Ahf ot hfy

Predictor ouput error =%, " Xn4p =" % p?+ % p3+-L 6‘(%161})))))

96p *a)p ﬁ)p
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In order to compare the relative accuracy of the different predictor methodssummarized in
Tables 1, 2 and 3 we rewrite the formulas for the approximate output error for a predictor method of
orde k in the following fom:

Predictor ouput error = qup Xn+p #" fk(p)(ph)k+1ddkf , (2
£k
where for pradictor formulas of orde 2, 3,4 an 5 in Table 1 the fundion f,(p) is given by
% " %
+ L 11 1.1, ‘
f $—+ f = L R 2
n %
1 5 7 1 1, .
f4(p) = + to—t (<

$ + )
#Hp* 12p% 24p2 12p 120g

" %
f5(p)=$1 , 187 15 17 5 17
#6p> 360p* 48p3 144p2 240p 720g

@

In the same way formulas for thefunction fi(p) can bewritten for the predictor methodsof orde 2,
3,4 ad 5 gven in Table 2. Thus

A‘J n %
1, 29 11 1
f $—+—+ , ¢ + + =", 24
AP #6p2 3p 6g fa(P)= #lOp 120p2 60p 24g (
19 307 571 212 1 %
f4( p) - 4 + 3 2 (2
#270|O 1620p° 3240pc 3240p 120&
[1] %
81 3133 5965 473 1031 1,
fs(p) = =t 7t s+ 5+ + . (2
#ﬂ506p 20080 36144p° 6024p- 602400 720g
For the predictor methodsof orde 2, 3, 4and 5 n Table 3, the fundion f(p) is given by
f 1/ .
—+— +—+—
1,11 .1, 1% ‘
f = + + = :
A= #8|03 72p2 16p 120g (
n %
fs(p) = 1 + 5 + 7 + 1 + 1, (¢

#mp“ 36p3 9ep?2 60p 720g

With the orde k = 2 for each of the three predictor methods Figure 3 shows plots of the
function f,(p) givenin Eqgs (23), (26) and (29) versusthe predictor index p. Similar plots of fi.(p)
for k =3, 4 and 5, as obtained udng Eqgs (23) through (29), are shown in Figures 4, 5 and 6,
respectively. The figures dearly showtha %, based onfy, fiyy, fye 5, ..., which can beused when
both x, andf,, (= x;,) are state variables, always yieldsthe mos accurae predlctlon Prediction with
%h+p based on Xy, X1, fyeq, fye 2, .., Which can beused when only x,, is astate variable, yieldsthe
ne<t mog accurate results. Predlctlon with %, based on Xy, X1, Xy 2, .., Which must be used
when X, is notasate variable, gives the least accurate results.
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5. Other Methods for Obtaining Prediction

In addition to the use of the predictor formulas described abovein Sections 2, 3 and 4,
there are several dternate methodsto achieve a time lead in real-time simulation. The first
method can be used when both x,, and its time derivative x| are state variables in a simulation.
We recall that this is a prerequisite for the predictor of Section 4, based on X, f,,, fyrq, fyr o, oo
When udng a single-pass integration method such as Adams-Bashforth, during the nth integra
tion frame we can integrate x,,, to obtain x,,, at the end of the nth frame. This results in the
availability of the state-variable x one entire integration step before it occursin real time. Thisis
equivalent to using a predictor formula for X,., in Table 3 of the same order as the Adams-
Bashforth integration methodused in the smulation, with the predictor index p set equd to 1.

A second method of obtaining a pure time lead in a real-time simulation is to utilize a
numerical integrétion step-size h which is larger than the processor execution time for oneinte-
gralionstep. In past years, when digital processorswere much slower than current processors it
was cugomary in a real-time simulation to set the step-size h equd to the proaessor execution
time for a singe integration step, thus minimizing the dynamic errors caused by the numerical
simulation. With the much highe processor peeds currently available, this procedure may often
not be required. For example, if the integration step size h is set equd to twice the processor
execution time for each integration frame, the simulation output X, is available h/2 seconds
ahead of real time. Thisthen becomes an exact numerical prediction of /2 secondsfor x,. This
in turn can be used to compensate for the hdf-frame dday assodated with D to A convaters
usng zero-orde hdd extrapolation. On the other hand, if Eq. (22) for the predictor output error
k}wp" Xn+p 1S €xamined, alongwith the fi(p) functionsshown in Figures 3, 4, 5 and 6, it is ap-
parent tha for a given prediction time-interval ph, it is better to maximize the prediction index
p. Thisin turnis achieved by minimizing the time step h assodated with the predictor inpu
daa-sequence {x,}, which is achieved by setting theintegration step used for the real-time simu-
lationthat generates X, equd to the proaessor execution ime for each gep.

6. UImmary

In this pgpoer we have described anunber of predictor formulas which can beutilized in a
simulation to provide real-time outputs with a time lead of ph seconds as needed to compensate
for any time delays occurring elsewhere in the smulation. The predictor formulas are summar-
ized in Tables 1, 2 and 3, which indude formulas for the approxmate error in predicted output
f}ﬁp. The relative accuracy of different orders of predictor formulas is presented in Figures 3
through 6. Wien apredictor input x,, contains discontinuities, the smulation results in Fgures 1
and 2 remind us that there is no method that can prodice an output ﬁ%p which represents an
accurae prediction prior to the time at which the discontinuity occurs The formulas for the
approximate predictor oufput errorsin Tables 1, 2 and 3 demondrate that for a given prediction
time-interval ph, the predictor output error will be minimized when the time step h of the predic-
tor input data sequence {x,} is minimized, since this maximizes the prediction index p. This
suggests tha in a real-time simulation requiring the use of predictor formulas, the integration
time-step h used for numerical integréaion in the smulation should be set equd to the maximum
proaessor execution ime required for each integration gep.
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