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1. Intr oduction 

 In real-time simulation it may sometimes be necessary to advance a data sequence { xn}  by a 
given time interval in order to compensate for a delay of the same time interval which occurs 
somewhere else in the simulation.  For example, it is well known that a D to A (digital-to-analog) 
converter that employs a zero-order hold introduces an effective delay equal to one-half the time step 
h associated with the data sequence driving the D to A converter.  If left uncompensated, this can 
introduce a signifi cant dynamic error in a closed-loop, real-time simulation.  Additional unwanted 
delays may also occur in the interface used to transfer data between simulation processors, or in data 
transfers between simulation processors and actual hardware in a hardware-in-the-loop simulation. 

 In this paper we present a number of formulas for calculating an estimated data sequence 
{ ö x n+p}  from a given data sequence xn, where h is the data sequence time step and ph is the pre-
diction time interval.  For each formula we will derive an equation for the approximate error in the 
predicted data point ö x n+p  which, in turn, will allow us to compare the effectiveness of different pre-
dictor formulas. 

 We begin by considering the Taylor series for the data point xn+p in terms of xn and its time 
derivatives.  Thus we can write 

xn+p = xn+ ph ! x n+ 1
2

(ph)2 ! ! x n + 1
6

(ph)3 ! ! ! x n +...+ 1
k!

(ph)kdkx
dtk

+ ... . (1)
 

Equations for the estimated data-point ö x n+p  are determined by deriving formulas for approxima-
tions of the time derivatives of x in Eq. (1) in terms of current and past values of xn and its time 
derivatives. 

2. Predictors Using xn, xn-1, xn-2, ... 

 We fi rst consider formulas for converting a data sequence { xn}  to a data sequence { xn+p} , 
i.e., predicting data sequences ph seconds into the future, using xn, xn-1, xn-2, ... .  We begin by writ-
ing the following Taylor series formulas for xn, xn-1, xn-2, ... , where ! x n= fn:  

xn! 2 = xn ! 2hfn+ 2h2 " f n ! 4
3

h3
" " f n + 2

3
h4

" " " f n ! ... ,

xn! 3 =xn ! 3hfn+ 9
2

h2 " f n ! 9
2

h
3

" " f n + 27
8

h
4

" " " f n ! ...,

xn! 4 = xn ! 4hfn+8h2 " f n ! 32
3

h3 " " f n + 32
3

h4 " " " f n ! ...,

.

.

.

xn! 1 = xn ! hfn+ 1
2

h2 " f n ! 1
6

h3
" " f n + 1

24
h4

" " " f n ! ... , (2)

(3)

(4)

(5)

 
To derive a predictor formula based on xn, xn-1 and xn-2, we solve Eqs. (2) and (3) for fnand ! f n  to 
order h3.  Thus we obtain        
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hfn ! 3
2

xn" 2xn"1+ 1
2

xn" 2   + 1
3

h3 # # f n ,

h # f n ! xn " 2xn" 1+ xn" 2  +h3 # # f n .  

(6)

(7)
 

The formulas for the estimated first and second derivatives are then: 

hö f n = 3
2

xn! 2xn! 1+ 1
2

xn! 2   ,

h " ö f n = xn ! 2xn! 1+ xn! 2 ,

(8)

(9)
 

with the errors in the formulas given by 

hö f n !   " 1
3

h3 # # f n ," hf n

h3 # # f n .h # ö f n ! "h # f n"

(10)

(11) 
The prediction formula for ö x n+p  becomes 

(12)xn+p = xn+ phf n + 1
2

(ph)2 ! f n .ö ö ö 
 

From Eqs. (1), (10), (11) and (12) it follows that the predictor error is given approximately by 

ö x n+p ! xn+p " ! 1
3
p+ 1

2
p2+ 1

6
p3# 

$ 
% 
& h

3 ' ' f n . (13)
 

For an example, assume that the data-sequence {xn}  represents the output response of a second-order 
linear system with undamped natural frequency given by ! n and damping ratio "  given by 0.25.  For 
a prediction interval of 4h, i.e., p = 4, and a data-sequence time-step h = 0.2/! n, Figure 1 shows the 
predictor response ö x n+p  compared with (xn+p)exact ,  the ideal response.  Note that the ideal predictor 
response starts at ! nt = !  ph = !  4(0.2) = !  0.8, whereas the actual predictor re-sponse ö x n+p  doesn't 
start until  ! nt > 0.  This is because the predictor formulas represented above by Eqs. (8) through 
(13) cannot provide a response which ideally should occur prior to the input data stimulus at t = 0.  
For t > 0, Figure 1 shows that the predictor data-sequence output ö x n+p  exhibits a reasonably close 
match with the ideal predictor output (xn+p)exact, despite the relatively large four-step prediction 
interval represented by p = 4.  By comparison, consider the predictor error when the data sequence 
{ xn}  is a sinusoid with xn = sin(! nh).  In this case ! ! f  in Eq. (13) is equal to !  ! 3cos(! nh).  Then Eq. 
(13) indicates that the error in predictor output data-point ö x n+p is given approximately by (p/3 + p2/2 
+ p3/6)(! h)3cos(! nh).  For p = 4 and ! h = 0.2, which represent parameters equivalent to those used in 
Figure 1, the steady-state  error represent-ed by Eq. (13) is a sinusoid with an amplitude equal to 
0.16.  Except for the startup error at t = 0 the errors for the predictor example shown in Figure 1 are 
smaller in magnitude than 0.16. 

 Figure 2 repeats the example shown in Figure 1, but with half the data-sequence step size, 
i.e., 

!  

" nh = 0.1 instead of 0.2.  In order to maintain the same predictor lead time 

!  

tp=ph when the step 
size is halved, we increase the lead-time index p from 4 to 8 in obtaining the results shown in Figure 
2.  Note that the predictor errors in Figure 2 show only a modest decrease compared with the errors 
in Figure 1.  This is not surprising, since for p = 8 and 

!  

" nh = 0.1, Eq. (13) yields an error in 

!  

ö x n+p 
which is only three quarters of the error for for p = 4 and 

!  

" nh= 0.2.  
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Figure 1. Predictor  output 

!  

ö x n+p for  input 

!  

xn  representing the unit-step response of a 

!  

2nd- 
order  system; predictor  output for mula based on 

!  

xn ,xn" 1 and xn" 2;  predictor  interval = 4h, 
where 

!  

h = 0.2/" n= data-sequence time step. 

 

Figure 2. Predictor  output 

!  

ö x n+p for  input 

!  

xn  representing the unit-step response of a 

!  

2nd- 
order  system; predictor  output for mula based on 

!  

xn ,xn" 1 and xn" 2;  predictor  interval = 8h, 
where 

!  

h= 0.1/" n = data-sequence time step. 

 

!  

(xn+p)exact

!  

ö x n+p

!  

" n = undamped natural frequency of 2nd- order system
# = 0.25= damping ratio of 2nd- order system

" nh = 0.2, " ntp = p" nh = 0.8, p = 4

!  

Step response to be advanced
in time begins here

!  

" nt

!  

" n = undamped natural frequency of 2nd- order system
# = 0.25= damping ratio of 2nd- order system

" nh = 0.1," ntp = p" nh = 0.8,p = 8

!  

Step response to be advanced
in time begins here

!  

(xn+p)exact

!  

ö x n+p

!  

" nt
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 Next we derive a predictor formula based on xn, xn-1, xn-2 and xn-3.  In this case we solve Eqs. 
(2), (3) and (4) for fn, ! f nand ! ! f n  to order h4.  This leads directly to the following formulas for 
ö f n, ! ö f nand ! ! ö f n:  

hö f n = 11
6

xn! 3xn! 1+ 3
2

xn! 2   ,! 1
3

xn! 3

h " ö f n = xn ! 5xn! 1+ xn! 2 ,2 4 xn! 3!

h " ö f n = xn ! 3xn! 1+ xn! 2 ,3 xn! 3!" 

(14)

(15)

(16)
 

with the errors in the formulas given by 

!  

hö f n " hfn = " 1
4

h3 # # # f n ,                                                              (17)

h2ö # f n " h2 # f n = " 11
12

h3 # # # f n ,                                                        (18)

h3ö # # f n " h3 # # f n = " 3
2

h3 # # # f n ,                                                          (19)
 

The prediction formula for 

!  

ö x n+p becomes 

!  

ö x n+p = xn+phfn + 1
2

(ph)2 " f n + 1
6

(ph)3 " " f n .                                        (20)
 

From Eqs. (1) and (17) through (20) the predictor error is given approximately by 

!  

ö x n+p" xn+p # " 1
4

p+ 11
24

p2 + 1
4

p3 + 1
24

p4$ 
% & 

'  
( ) 
h4 * * * f n  .                              (21)

 
When the data sequence { xn}  is a sinusoid given by 

!  

xn= sin(" nh),  # # # f n  in Eq. (21) is equal to  

!  

" 4sin(" nh) .   For p = 4 and ! h = 0.2 this results in a steady-state sinusoidal error amplitude of 
approximately 0.078, compared with the amplitude of 0.16 noted earlier for the case where the 
predictor method is based on xn, xn-1 and xn-2.  When the predictor input data-sequence { xn}  rep-
resents the output response of a second-order linear system, i.e., the case considered in Figure 1, the 
initial startup transient errors associated with the third-order predictor based on xn, xn-1, xn-2 and xn-3 
are considerably larger than the startup errors shown in Figure 1 for the second-order method based 
on xn, xn-1 and xn-2.  However, following the initial startup errors, subsequent dynamic errors for the 
third-order predictor are significantly smaller in magnitude than the errors for the second-order 
predictor method. 

 To derive a predictor formula based on 

!  

xn, xn" 2, xn" 3 and xn" 4, Eqs. (2), (3), (4) and (5) are 
solved for 

! 

fn, " f n, " " f n and " " " f n  to order h5.  This leads directly to the formulas shown in Table 1, which 
summarizes the predictor formulas of order 2 through 5 when the predictor is based on xn

 and past 
values of xn. 

3. Predictors Based on 

!  

xn ,xn" 1, fn" 1, fn" 2, fn" 3,  ... 

 When 

!  

xn represents a state variable, which will more often than not be the case in a real-time 
simulation, the time derivative 

!  

fn"1 will also be available when the data point 

!  

xn is calculated.  Then 
it is better to use a predictor formula based on 

!  

xn,xn" 1 and its time derivatives 

!  

fn" 1,

!  

fn" 2, fn" 3,  ... , 
rather than more past values of 

!  

xn.  In this case Eq. (2), in addition to the Taylor series formulas for  

!  

fn" 1, fn" 2, fn" 3,  ... , written in terms of 

!  

fn, " f n, " " f n, ... , is used to derive formulas for 

!  

fn, " f n, " " f n, ... , as 
needed in the coeff icients of the Taylor series equation for the predictor output 

!  

ö x n+p. Table 2 
summarizes the predictor formulas of order 2 through 5, along with the approximate predictor errors 
when the predictor is based on 

!  

xn,xn" 1 and past values of its time derivative  

!  

fn.  
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Table 1 

Predictors based on 

!  

xn ,xn" 1,xn" 2,xn" 3,  ... 

!  

{xn} = predictor input data sequence; 

!  

{xn+p} = predictor output data sequence; 

!  

" x n= fn 

2nd-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n, where 

!  

hö f n = 3
2

xn " 2xn" 1 + 1
2

xn" 2,  h2 # f n = xn " 2xn" 1 + xn" 2 

Predictor output error

!  

= ö x n+p " xn+p = " 1
3

p + 1
2

p2 + 1
6

p3# 
$ % 

& 
'  ( 
h3 ) ) f n

 

3rd-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n+ 1
6

(ph)3 " " ö f , where 

!  

hö f n = 11
6

xn " 3xn" 1+ 3
2

xn" 2 " 1
3

xn" 3, h2 # ö f n = 2xn" 5xn" 1+4xn" 2 " xn" 3,
 

!  

h3 " ö " f n = xn #3xn#1+3xn#2 #xn#3 

Predictor output error 

!  

= ö x n+p " xn+p = " 1
4

p + 11
24

p2 + 1
4

p3+ 1
24

p4# 
$ % 

& 
'  ( 
h4 ) ) ) f n  

4th-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n+ 1
6

(ph)3 " " ö f n + 1
24

(ph)4 " " " ö f , where 

!  

hö f n = 25
12

xn " 4xn" 1+ 3xn" 2 " 4
3

xn" 3+ 1
4

xn" 4 , h2 # ö f n = 35
12

xn " 26
3

xn" 1+ 19
2

xn" 2 " 14
3

xn" 3 + 11
12

xn" 4,
 

! 

h3 " " ö f n = 5
2

xn # 9xn#1+12xn#2 # 7xn#3 + 3
2

xn#4,  h4ö " " " f n = xn# 4xn#1+ 6xn#2 # 4xn#3 + xn#4 

Predictor output error 

!  

= ö x n+p " xn+p = " 1
5

p + 5
12

p2 + 7
24

p3+ 1
12

p4+ 1
120

p5# 
$ % 

& 
'  ( 
h5 ) ) ) ) f n  

5th-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n+ 1
6

(ph)3 " " ö f n + 1
24

(ph)4 " " " ö f n + 1
120

(ph)5ö " " " " f 
n

,
 

where 

!  

hö f n = 137
60

xn " 5xn" 1+ 5xn" 2 " 10
3

xn" 3+ 5
4

xn" 4 " 1
5

xn" 5, 

!  

 h2 ö " f n = 15
4

xn# 77
6

xn#1 + 107
6

xn#2 #13xn#3 + 61
12

xn#4 # 5
6

xn#5,
 

!  

h3 " " ö f n = 17
4

xn # 71
4

xn#1+ 59
2

xn#2 # 49
2

xn#3 + 41
4

xn#4 # 7
4

xn#5, 

!  

h4ö " " " f n = 3xn# 14xn#1+ 26xn#2 # 24xn#3 +11xn#4 #2xn#5, 

!  

h5ö " " " f n = xn# 5xn#1 +10xn#2 #10xn#3 +5xn#4 # xn#5, 

Predictor output error = 

 

!  

ö x n+p" xn+p =" 1
5

p + 137
360

p2 + 15
48

p3+ 17
144

p4+ 5
240

p5 + 1
720

p6# 
$ % 

& 
'  ( 
h6 ) ) ) ) ) f n
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Table 2 

Predictors based on 

!  

xn ,xn" 1, fn" 1, fn" 2, fn" 3,  ... 

!  

{xn} = predictor input data sequence; 

! 

{xn+p} = predictor output data sequence; 

!  

" x n= fn  

2nd-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n, where 

!  

hö f n = 2xn " 2xn" 1 " hfn" 1,  h
2 # ö f n = 2xn" 2xn" 1" 2hfn" 1,

 
Predictor output error

!  

= ö x n+p " xn+p # " 1
6

p+ 1
3

p2 + 1
6

p3$ 
% & 

'  
( ) 
h3 * * f 

 

3rd-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n+ 1
6

(ph)3 " " ö f , where 

!  

hö f n = 12
5

xn " 12
5

xn" 1 " 8
5

hfn" 1 + 1
5

h2 fn" 2,  h2 # ö f n = 18
5

xn" 18
5

xn" 1" 22
5

hfn" 1+ 4
5

hfn"2 ,
 

! 

h3 " ö " f n = 12
5

xn #
12
5

xn#1#
18
5

hfn#1 + 6
5

hfn#2 

Predictor output error 

!  

= ö x n+p " xn+p # " 1
10

p+ 29
120

p2 + 11
60

p3+ 1
24

$ 
% & 

'  
( ) 
h4 * * * f n

 

4th-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n+ 1
6

(ph)3 " " ö f n + 1
24

(ph)4 " " " ö f , where 

!  

hö f n = 8
3

xn " 8
3

xn" 1" 19
9

hfn" 1+ 5
9

h2fn" 2 " 1
9

h3fn" 3,
 

! 

h2 " ö f n = 44
9

xn#
44
9

xn#1#
371
54

hfn#1+ 68
27

hfn#2#
29
54

hfn#3,
 

!  

h3ö " " f n =16
3

xn#16
3

xn#1# 83
9

hfn#1+
46
9

hfn#2#11
9

hfn#3, h4 " " " f n = 8
3

xn# 8
3

xn#1# 46
3

hfn#1 + 32
9

hfn#2#10
9

hfn#3
 

Predictor output error 

!  

= ö x n+p" xn+p # " 19
270

p+ 307
1620

p2 + 571
3240

p3 +
212
3240

p4 +
1

120
p5$ 

% & 
'  
( ) 
h5 * * * * f n

 

5th-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2 " f n+ 1
6

(ph)3 " " f n + 1
24

(ph)4 " " " f n + 1
120

(ph)5 " " " " f n ,
 

               where 

!  

hö f n= 720
251

xn" 720
251

xn"1" 646
251

hfn"1+ 264
251

hfn" 2" 106
251

hfn" 3+ 19
251

hfn" 4,
 

!  

h2ö " f n = 1500
251

xn# 1500
251

xn#1# 14099
1506

hfn#1+
1303
251

hfn#2# 1111
251

hfn#3+ 307
251

hfn#4,
 

!  

h3ö " " f n = 1800
251

xn# 1800
251

xn#1# 3874
251

hfn#1+ 3672
251

hfn#2# 2022
251

hfn#3+ 424
251

hfn#4,
 

!  

h4ö " " " f n = 720
251

xn # 720
251

xn#1# 1650
251

hfn#1+ 1770
251

hfn#2# 1110
251

hfn#3+ 270
251

hfn#4,
 

!  

xn" 2100
251

xn"1" 8119
502

hfn"1+
6309
502

hfn" 2" 2961
502

hfn" 3+ 571
502

hfn" 4,
 

Predictor output error = 

 

!  

ö x n+p " xn+p # " 81
1506

p + 3133
20080

p2 + 5965
36144

p3+ 473
6024

p4 + 1031
60240

p5+ 1
720

p6$ 
% & 

'  
( ) 
h6 * * * * * f 
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4. Predictors Using 

!  

xn, fn , fn" 1, fn" 2 , fn" 3,  ...  

 Not infrequently in a dynamic simulation both the output data-point 

!  

xn and its time deri-
vative 

!  

fn are state variables.  For example, this may be the case when the system being simulated 
involves a double integration of acceleration to compute velocity and displacement.  When this is 
true, both 

!  

xn and fn are available for calculating 

!  

ö x n+p. The predictor formula can then be based on 

!  

xn, fn, fn" 1, fn" 2, fn" 3,  ... .  Formulas for 

! 

ö " f n, ö " " f n, ö " " " f n,  ... are again derived from Taylor series rep-
resenting 

!  

fn" 1, fn" 2, fn" 3,  ... in terms of 

!  

" f n, " " f n, " " " f n,  ....  Table 3 summarizes the predictor formulas of 
order 2 through 5, along with the approximate predictor errors.  It should be noted that whenever the 
prediction index p = 1, the formulas for 

!  

ö x n+p given in Table 3 reduce to the formula for 

!  

xn+1 in the 
Adams-Bashforth predictor integration algorithm of order 2.  

Table 3 

Predictors based on 

! 

xn, fn , fn"1, fn"2, fn"3,  ... 

!  

{xn} = predictor input data sequence; 

!  

{xn+p} = predictor output data sequence; 

!  

" x n= fn  

2nd-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n, where 

!  

h2 " f n = 3
2

fn # 1
2

fn#1 

Predictor output error

!  

= ö x n+p " xn+p # " 1
4

p2 + 1
6

p3$ 
% & 

'  
( ) 
h3 * * f n   

3rd-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n+ 1
6

(ph)3 " " ö f , where 

! 

h
2 " f n = 3

2
hfn #2hfn#1+ 1

2
hfn#2, h

3 " " f n = hfn # 2hfn#1+hfn#2
 

Predictor output error 

!  

= ö x n+p " xn+p # " 1
6

p2 + 1
6

p3 + 1
24

p4$ 
% & 

'  
( ) 
h4 * * * f n  

4th-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2ö " f n+ 1
6

(ph)3 " " ö f n + 1
24

(ph)4 " " " ö f , where 

!  

h2 " f n = 11
6

hfn # 3hfn#1+ 3
2

hfn#2 # 1
3

hfn#3, h3 " " f n = 2hfn # 5hfn#1+ 4hfn#2 # hfn#3,
 

!  

h4 " " " f n = hfn # 3hfn#1+ 3hfn#2 # hfn#3 

Predictor output error

!  

= ö x n+p " xn+p # " 1
8

p2 + 11
72

p3 + 1
16

p4 + 1
120

p5$ 
% & 

'  
( ) 
h5 * * * * f n  

5th-order predictor formula: 

!  

ö x n+p=xn+phö f n+ 1
2

(ph)2 " f n+ 1
6

(ph)3 " " f n + 1
24

(ph)4 " " " f n + 1
120

(ph)5 " " " " f n ,
 

         where 

!  

h2 " f n = 25
12

hfn # 4hfn#1+3hfn#2# 4
3

hfn#3 + 1
4

hfn#4 ,
 

!  

h3 " " f n = 35
12

hfn # 26
3

hfn#1+ 19
2

hfn#2 # 14
3

hfn#3+ 11
12

hfn#4, 

!  

h4 " " " f n = 5
2

hfn # 9hfn#1+12hfn#2# 7hfn#3+ 3
2

hfn#4, h5 " " " " f n = hfn# 4hfn#1+6hfn#2 # 4hfn#3+ hfn#4
 

Predictor output error 

!  

= ö x n+p" xn+p = " 1
10

p2 + 5
36

p3+ 7
96

p4 + 1
60

p5 + 1
720

p6# 
$ % 

& 
'  ( 
h6 ) ) ) ) ) f n  
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 In order to compare the relative accuracy of the different predictor methods summarized in 
Tables 1, 2 and 3 we rewrite the formulas for the approximate output error for a predictor method of 
order k in the following form:  

Predictor output error 

!  

= ö x n+p" xn+p # " fk(p)(ph)k+1dkfn
dt k

 ,                          (22)
 

where for predictor formulas of order 2, 3, 4 an 5 in Table 1 the function 

!  

fk(p) is given by 

!  

f
2
(p) = 1

3p2
+ 1

2p
+ 1

6

" 

# 
$ 

% 

& 
'   ,  f3(p) = 1

4p3 + 11
24p2 + 1

4p
+ 1

24

" 

# 
$ 

% 

& 
'   ,                          (23)

 

!  

f4(p) = 1
5p4

+ 5
12p3 + 7

24p2 + 1
12p

+ 1
120

" 

# 
$ 

% 

& 
'   ,                                       (24)

 

!  

f5(p) = 1
6p5

+ 137
360p4

+ 15
48p3 + 17

144p2 + 5
240p

+ 1
720

" 

# 
$ 

% 

& 
'   .                             (25)

 

In the same way formulas for the function 

!  

fk(p) can be written for the predictor methods of order 2, 
3, 4 and 5 given in Table 2.  Thus  

!  

f
2
(p) = 1

6p2
+ 1

3p
+ 1

6

" 

# 
$ 

% 

& 
'   ,  f3(p) = 1

10p3 + 29

120p2 + 11
60p

+ 1
24

" 

# 
$ 

% 

& 
'   ,                       (26)

 

!  

f4(p) =
19

270p4
+ 307

1620p3 +
571

3240p2 +
212

3240p
+ 1

120

" 

# 
$ 

% 

& 
'   ,                               (27)

 

!  

f5(p) = 81

1506p5
+ 3133

20080p4
+ 5965

36144p3 + 473

6024p2 + 1031
60240p

+ 1
720

" 

# 
$ 

% 

& 
'   .                 (28)

 

For the predictor methods of order 2, 3, 4 and 5 in Table 3, the function 

!  

fk(p) is given by  

!  

f
2
(p) = 1

4p
+ 1

6

" 

# 
$ 

% 

& 
'   ,  f3(p) = 1

6p2 + 1
6p

+ 1
24

" 

# 
$ 

% 

& 
'   ,                                     (29)

 

!  

f4(p) = 1
8p3 + 11

72p2 +
1

16p
+ 1

120

" 

# 
$ 

% 

& 
'   ,                                             (30)

 

!  

f5(p) = 1

10p4
+ 5

36p3 + 7

96p2 + 1
60p

+ 1
720

" 

# 
$ 

% 

& 
'   .                                    (31)

 
 With the order k = 2 for each of the three predictor methods, Figure 3 shows plots of the 
function 

!  

f
2
(p) given in Eqs. (23), (26) and (29) versus the predictor index p.  Similar plots of 

!  

fk(p) 
for k = 3, 4 and 5, as obtained using Eqs. (23) through (29), are shown in Figures 4, 5 and 6, 
respectively.  The figures clearly show that 

!  

ö x n+p based on 

!  

fn, fn" 1, fn" 2,  ... , which can be used when 
both 

!  

xn and fn (= " x n) are state variables, always yields the most accurate prediction.  Prediction with 

!  

ö x n+p based on 

!  

xn,xn" 1, fn" 1, fn" 2,  ..., which can be used when only 

!  

xn is a state variable, yields the 
next most accurate results.  Prediction with 

!  

ö x n+p based on 

!  

xn,xn" 1,xn" 2,  ..., which must be used 
when 

!  

xn is not a state variable, gives the least accurate results.  
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Figure 3. Comparative accuracy of three different second-order  predictors. 

 

 

Figure 4. Comparative accuracy of three different third-order  predictors. 
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Figure 5. Comparative accuracy of three different four th-order  predictors. 

 

 

Figure 6. Comparative accuracy of three different fi fth-order  predictors. 
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5. Other  Methods for Obtaining Prediction 

 In addition to the use of the predictor formulas described above in Sections 2, 3 and 4, 
there are several alternate methods to achieve a time lead in real-time simulation.  The fi rst 
method can be used when both 

!  

xn and its time derivative 

!  

" x n are state variables in a simulation.  
We recall that this is a prerequisite for the predictor of Section 4, based on 

!  

xn, fn, fn" 1, fn" 2, .... 
When using a single-pass integration method such as Adams-Bashforth, during the nth integra-
tion frame we can integrate 

!  

xn+1 to obtain 

!  

xn+2 at the end of the nth frame.  This results in the 
availability of the state-variable x one entire integration step before it occurs in real time.  This is 
equivalent to using a predictor formula for 

!  

xn+p in Table 3 of the same order as the Adams-
Bashforth integration method used in the simulation, with the predictor index p set equal to 1. 

 A second method of obtaining a pure time lead in a real-time simulation is to utilize a 
numerical integration step-size h which is larger than the processor execution time for one inte-
gration step.  In past years, when digital processors were much slower than current processors, it 
was customary in a real-time simulation to set the step-size h equal to the processor execution 
time for a single integration step, thus minimizing the dynamic errors caused by the numerical 
simulation.  With the much higher processor speeds currently available, this procedure may often 
not be required.  For example, if the integration step size h is set equal to twice the processor 
execution time for each integration frame, the simulation output 

!  

xn is available h/2 seconds 
ahead of real time.  This then becomes an exact numerical prediction of h/2 seconds for 

!  

xn. This 
in turn can be used to compensate for the half-frame delay associated with D to A converters 
using zero-order hold extrapolation.  On the other hand, if Eq. (22) for the predictor output error 

!  

ö x n+p" xn+p  is examined, along with the

!  

fk(p) functions shown in Figures 3, 4, 5 and 6, it is ap-
parent that for a given prediction time-interval ph, it is better to maximize the prediction index  
p.  This in turn is achieved by minimizing the time step h associated with the predictor input 
data-sequence 

!  

{xn},  which is achieved by setting the integration step used for the real-time simu-
lation that generates 

! 

xn equal to the processor execution time for each step.  

6. Summary 

 In this paper we have described a number of predictor formulas which can be utilized in a 
simulation to provide real-time outputs with a time lead of ph seconds, as needed to compensate 
for any time delays occurring elsewhere in the simulation.  The predictor formulas are summar-
ized in Tables 1, 2 and 3, which include formulas for the approximate error in predicted output 

!  

ö x n+p.  The relative accuracy of different orders of predictor formulas is presented in Figures 3 
through 6.  When a predictor input 

!  

xn contains discontinuities, the simulation results in Figures 1 
and 2 remind us that there is no method that can produce an output 

!  

ö x n+p which represents an 
accurate prediction prior to the time at which the discontinuity occurs.  The formulas for the 
approximate predictor output errors in Tables 1, 2 and 3 demonstrate that for a given prediction 
time-interval ph, the predictor output error will be minimized when the time step h of the predic-
tor input data sequence 

!  

{xn}  is minimized, since this maximizes the prediction index p.  This 
suggests that in a real-time simulation requiring the use of predictor formulas, the integration 
time-step h used for numerical integration in the simulation should be set equal to the maximum 
processor execution time required for each integration step. 

 


